
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 15, No.1 (Jan-24)

http://dx.doi.org/10.12785/ijcds/150118

BushraDBR:
An Automatic Approach to Retrieving Duplicate Bug Reports

Ra’Fat Al-Msie’deen1

1Department of Software Engineering, Faculty of IT, Mutah University, Mutah 61710, Karak, Jordan

Received 27 Feb. 2023, Revised 3 Jan. 2024, Accepted 6 Jan. 2024, Published 15 Jan. 2024

Abstract: A Bug Tracking System (BTS), such as Bugzilla, is generally utilized to track submitted Bug Reports (BRs) for a particular
software system. Duplicate Bug Report (DBR) retrieval is the process of obtaining a DBR in the BTS. This process is important to
avoid needless work from engineers on DBRs. To prevent wasting engineer resources, such as effort and time, on previously submitted
(or duplicate) BRs, it is essential to find and retrieve DBRs as soon as they are submitted by software users. Thus, this paper proposes
an automatic approach (called BushraDBR) that aims to assist an engineer (called a triager) to retrieve DBRs and stop the duplicates
before they start. Where BushraDBR stands for Bushra Duplicate Bug Reports retrieval process. Therefore, when a new BR is sent to
the Bug Repository (BRE), an engineer checks whether it is a duplicate of an existing BR in BRE or not via BushraDBR approach. If
it is, the engineer marks it as DBR, and the BR is excluded from consideration for any additional work; otherwise, the BR is added
to the BRE. BushraDBR approach relies on Textual Similarity (TS) between the newly submitted BR and the rest of the BRs in BRE
to retrieve DBRs. BushraDBR exploits unstructured data from BRs to apply Information Retrieval (IR) methods in an efficient way.
BushraDBR approach uses two techniques to retrieve DBRs: Latent Semantic Indexing (LSI) and Formal Concept Analysis (FCA).
The originality of BushraDBR is to stop DBRs before they occur by comparing the newly reported BR with the rest of the BRs in the
BTS, thus saving time and effort during the Software Maintenance (SM) process. BushraDBR also uniquely retrieves DBR through the
use of LSI and FCA techniques. BushraDBR approach had been validated and evaluated on several publicly available data sets from
Bugzilla. Experiments show the ability of BushraDBR approach to retrieve DBRs in an efficient and accurate manner.

Keywords: Software engineering, Software maintenance, Duplicate bug report retrieval, Formal concept analysis, Latent semantic
indexing, Bug tracking system, Bug report.

1. Introduction
A software bug is a fault in its code, made by soft-

ware coders, that prevents software from running properly.
Software bugs are reported as BRs to a BTS during SM.
Hundreds of BRs are submitted every day for large and
complex software products (e.g., Mozilla and Eclipse). Du-
plicated BRs arise when multiple users report multiple BRs
for the same software bug [1]. Because of the asynchronous
nature of the BR submission process, conventional BTSs
(e.g., Bugzilla) cannot avoid DBRs. Thus, some BRs remain
duplicates of one another in BTSs [2]. DBRs cause a main
overhead in SM process since they usually cost valuable
development time, effort, cost, and resources [3]. DBR
detection (aka. BR de-duplication) is a hot topic in the
software engineering field [4] [5].

Software bugs are inevitable in software products due
to their complexity. One of the most significant activi-
ties during SM is bug fixing. Software failures affected
many stockholders and caused financial losses. Therefore,
knowing how to correctly fix as many bugs as possible is

a big help in the development of software products [2].
Nowadays, BRs have been playing an essential role in bug
fixing since they offer certain details (e.g., bug summary
and description) to help software engineers locate and fix
specific defects in software code [6].

Large software products (e.g., Eclipse) continuously
receive several BRs, especially after main releases when
users report new bugs [7]. In order to confirm and assign
the reported bug to an engineer for fixing, it is impor-
tant to check if this bug has been submitted before [8].
When DBRs are found, BRs are marked as a result, thus
preventing possibly redundant work and the cost of bug
fixing [9]. As soon as the number of BRs is huge, detecting
(or retrieving) DBRs becomes a time-consuming, costly,
and error-prone task. Therefore, this paper suggests an
automatic approach that aims to save time, cost, and effort
and increase the accuracy of the DBR detection process.
BushraDBR is an open-source approach for engineers to
help them retrieve possible DBRs before assigning them to
software developers.

E-mail address: rafatalmsiedeen@mutah.edu.jo https:// journal.uob.edu.bh/

http://dx.doi.org/10.12785/ijcds/150118
https://journal.uob.edu.bh/

222 Ra’Fat Al-Msie’deen: BushraDBR — An Automatic Approach to Retrieving Duplicate Bug Reports.

The bug reporting activity is an essential part of the SM
process. Nowadays, BTS is employed by software users to
maintain the track record of a software bug that is reported
throughout the usage of a specific software system [10].
The key input for any BTS is BRs. BTS upholds the Master
BRs set (MRs). Commonly, natural language is employed
to write BRs. The same BR can be written in several ways
by the software user who reports the bug. It is because
the vocabulary differs across software users based on their
level of technical background. The content of BR is later
examined by a specialist who has a complete understanding
of the software known as triager [11].

Triager has two key responsibilities. Where triager con-
verts the wording of BR into more technical language for
better comprehension by the software developers. Also,
triager carries out the search activity in MRs (or BRE) for
possible DBRs that have a similar (or common) signature.
Furthermore, if the New BR (Nr) is non-duplicate, then it is
joined to MRs; otherwise, it is deemed a DBR. On the other
hand, the filtering task of DBR requires a large amount of
time, manual effort, and a comprehensive understanding of
BRs [12].

SM activity is referred to as the modification process of
a software system after its delivery to end users in order
to correct software errors (or bugs) [13]. This activity aims
at improving software properties (e.g., performance) [14].
Sometimes, software maintenance is important to adapt
software products to a modified workplace (i.e., environ-
ment). Bug triaging is a significant, tedious, and time-
consuming task of SM activity [15].

DBRs are assigned to several developers for fixing
the bug, which wastes developer effort and time. Thus,
automating the DBR retrieval procedure is extremely valu-
able. It decreases the developer’s time, effort, and cost.
Also, the decrease in manual effort improves developers’
productivity. It also reduces the cost of SM activity [16].
Each BR has two kinds of information (i.e., structured
and unstructured). Structured information includes specific
information regarding the bug (e.g., product, component,
and severity of the bug). While the unstructured information
includes a natural language description of the bug (e.g., bug
summary and description). The description of a software
bug may be long or short [17]. A BR includes numerous
pieces of information that are related to a specific bug or
issue. Figure 1 gives an example of a BR from the Drawing
Shapes Application (DSA) [18] [19] [20]. DSA lets the end
user draw numerous types of shapes, like lines, rectangles,
and ovals [21] [22].

It has been seen that often a BR reported is a duplicate,
which results in large DBRs in a BTS [16]. When multiple
users report BRs for the same trouble, these reports are
known as DBRs. As demonstrated in existing studies, the
ratio of DBRs can be up to 30% [3]. DBRs lead to a state
where the same bugs are sent to several engineers who

Figure 1. An example of a BR from drawing shapes application.

reproduce and resolve the bug for the same reason, which is
considered a waste of time, effort, and cost [23]. DBRs are a
big problem for Quality Assurance (QA) engineers, triagers,
testers, and developers since they stimulate additional work
to resolve the problem [24]. In this paper, DBR retrieval is
the process of querying textually similar BRs in order to
group BRs that report the same trouble (or issue) in one
cluster.

Table I displays a pair of DBRs from Bugzilla [25].
Please note that the two BRs shown in Table I belong to the
same component, CSS parsing and computation [26], from
the core product [27]. Readers can observe that they are
textually similar and belong to the same product (i.e., core)
from Mozilla.

In this work, reports that are textually similar to each
other are called DBRs. TS between BRs is good evidence
that they describe the same (or similar) issue. Frequently,
DBRs are reported by multiple software users. These users
come from different backgrounds and use different vocab-
ularies to describe the same (or similar) software bug.

The important role of the triager is to check the reported
BRs for any possible duplicates before sending them to the
BRE. A manual check of submitted BRs is a difficult task
due to the huge number of BRs reported every day. On the
other hand, retrieving DBR after storing it in the BRE is a
tedious and expensive task for software developers. So, the

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 221-238 (Jan-24) 223

TABLE I. A pair of DBRs from Bugzilla (i.e., core product).

Bug
ID

A Short Summary
of the Bug Bug Description

67
11

28
[2

8] ”Assertion:
container didn’t
take ownership:
’Not Reached’”

”Assertion: container
didn’t take ownership:
’Not Reached’, file
layout/style/StyleRule.cpp,
line, ... etc.”

80
33

72
[2

9] ”Assertion:
container didn’t
take ownership”
mutating a deleted,
matched CSS rule”

”Assertion: container
didn’t take ownership:
’Not Reached’, file
layout/style/StyleRule.cpp,
line, ... etc.”

process of stopping DBRs before they start is important and
very useful. Thus, current studies have suggested numerous
approaches to retrieving and detecting DBRs from BRE
(cf. Section 2). The majority of existing approaches detect
DBRs within a single data set that contains all software
bugs (resp. BRE, BTS, or MRs).

The novelty of this paper is that it proposes a textual-
based approach (i.e., an IR-based solution) to stopping
DBRs before they start. BushraDBR prevents DBRs by
continuously checking the recently reported or submitted
BR against the BRs stored in the BTS. In the event that the
submitted BR is textually similar to any of the BRs inside
the BTS, the triager will exclude this BR from any further
work and not include it in the BTS.

Figure 2 gives an illustrative example regarding
BushraDBR approach workflow. BRE contains a collection
of BRs (i.e., BR 001, BR 002, BR 003, ..., BR n).
BushraDBR approach uses the newly submitted BR as
a query (i.e., Nr Bug-ID). Then, it calculates the TS
between query and BR documents based on LSI [30] [31].
Thereafter, it retrieves DBRs (if any) using FCA [32] [33].
In Figure 2, the test shows that the query document is
associated with a BR document with the ID ”BR 003”,
where the similarity score equals 0.98 (i.e., the highest
similarity score). Thus, in this example, BushraDBR makes
a successful retrieval of DBRs.

BushraDBR approach uses LSI and FCA to retrieve
DBRs. The interested reader can get further information
about LSI and FCA techniques from several previous stud-
ies [34] [35] [36] [37] [38] [39]. The suggested approach
was validated and evaluated on several data sets from
Bugzilla (cf. Section 4). The results of the experiments show
the ability of BushraDBR approach to retrieve DBRs when
they exist.

The rest of the paper is structured as follows: A mini-
systematic survey regarding DBRs detection and retrieval is
presented in Section 2. Section 3 details the DBR retrieval
process step by step. Experimental results are presented in
Section 4. Finally, Section 5 concludes the paper and talks

Figure 2. The workflow for retrieving DBRs via BushraDBR ap-
proach.

about the future work of BushraDBR.

2. A mini-systematic survey about DBR detection and
retrieval

Numerous approaches have been suggested in the lit-
erature to assist in the automatic detection of DBRs. This
section offers previous approaches relevant to BushraDBR
contributions.

Retrieving DBRs is a time-consuming and boring task
because of the various writing styles of the huge number of
submitted BRs to BTSs. Therefore, there is a need to pro-
pose BushraDBR approach in order to automate the process
of DBR retrieval and avert manual effort and analysis. The
main idea is to utilize BushraDBR approach for validating
whether the newly submitted BR (i.e., Nr) is duplicate or
non-duplicate. Over the last few years, numerous studies
have been suggested on the automatic retrieval and detection
of DBRs. The main details of these studies are offered
below:

To retrieve DBRs, Wang et al. [17] suggested an ap-
proach to detecting DBRs. They use natural language and
execution information to obtain and determine the TS in
MRs (or BRE). The experimental findings showed that the
suggested approach can detect 67%-93% of DBRs in MRs
of the Firefox project, compared to 43%-72% by utilizing
only natural language information.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

224 Ra’Fat Al-Msie’deen: BushraDBR — An Automatic Approach to Retrieving Duplicate Bug Reports.

Sun et al. [40] proposed an approach to detecting DBRs
by constructing a discriminative model that detects if two
BRs are duplicates of each other or not. Their model reports
a score on the possibility of X and Y being duplicates.
Then, this score is utilized to retrieve related BRs from a
BRE for user examination. On three BREs from Firefox,
Eclipse, and OpenOffice, they have studied the feasibility
of their method.

Jalbert and Weimer [3] suggested an approach that
automatically classifies DBRs as they arrive at BTS. The
main goal of their approach is to save developers’ time.
This work utilized textual semantics, graph clustering, and
surface features to find DBRs. Their technique is suggested
to decrease BR triage costs by discovering DBRs as they
are submitted. Thus, they built a classifier for the arriving
BRs to discover BR duplicates.

Sun et al. [41] suggested an approach based on BM25F
to retrieve DBRs, where BM25F is an efficient technique
for document similarity measurement. In addition to the
textual information of BRs (i.e., summary and description),
additional information from BRs (e.g., product, component,
priority, etc.) is employed to retrieve DBRs. The authors
assess their approach by generating a list of candidate
DBRs for every BR indicated as duplicate by the bug
triager, to determine whether or not the correct duplicate
is a candidate. On three MRs from Mozilla, Eclipse, and
OpenOffice, they applied their method. They achieved DBR
detection improvement with 17 − 23% in mean average
precision and 10 − 27% in recall rate@k (1 ≤ k ≤ 20).

Hindle and Onuczko [4] suggested the continuously
querying method, which assists software users in finding
DBRs as they type in their bug report. Their approach
attempts to prevent DBRs before they start by continuously
querying. Their approach has the ability to prevent dupli-
cates before they happen in 42% of cases by building a
simple IR model using TF-IDF and cosine distance to find
similar BRs from their prefixed queries.

Thung et al. [42] have proposed a tool named DupFinder
that finds the DBRs. DupFinder mines texts from the
summary and detailed description of a new BR and BRs
present in a BTS. Also, it uses the Vector Space Model
(VSM) to measure the similarity of BRs and provides the
software triager with a list of possible DBRs based on the
TS of these BRs with the new BR.

Kukkar et al. [11] suggested an automatic approach
for DBRs detection and classification by using the Deep
Learning (DL) technique. The suggested approach has three
components, which are: preprocessing, the DL model, and
DBR detection and classification. Their approach utilized a
Convolutional Neural Network (CNN) based DL model to
obtain the appropriate feature. These appropriate features
are utilized to define the similar features of BRs. Thus,
the BRs similarity is computed based on these similar
features. Their study calculated the similarity value of

two BRs. Then, BRs are categorized as duplicate or non-
duplicate based on the similarity values. The suggested
approach applied to several available data sets, like Mozilla,
NetBeans, and Gnome. The results are assessed using
different metrics, such as an F-measure, recall@k, accuracy,
precision, and recall. The accuracy rate of the suggested
approach is between 85% and 99%, and its recall@k rate is
between 79% and 94%, according to experimental results.
The results of BurshraDBR approach are evaluated using
different metrics, such as recall, precision, and F-measure.
The recall rate of BurshraDBR is 100%, and its precision
rate is 100%, according to experimental results, which
demonstrate that BurshraDBR approach performs better
than current approaches.

He et al. [43] have suggested a method to detect DBRs
in pairs by employing CNN. They suggested creating a
single representation for each pair of BRs via the Dual-
Channel Matrix (DCM). DCM is fed to CNN to discover
correlated semantic links between BRs. Then, the suggested
method determines whether a pair of BRs is duplicate
or not by using association features. They evaluate the
suggested method on three data sets from Open Office,
Eclipse, and NetBeans projects. Findings show that their
method achieves excellent accuracy.

In [44], Runeson et al. have suggested a method to
detect DBRs by employing Natural Language Processing
(NLP). Findings demonstrate that their method can find 2/3
of DBRs by means of NLP techniques. In their work, they
have described the five processing stages in NLP based
on Manning and Schütze [45], which are: tokenization
(or word splitting) [46], stemming (root of words) [47],
English stop words removal, representation of the vector
space, and, at last, calculating similarity values. From their
work, BurshraDBR’s approach uses some steps in the pre-
processing of BRs, such as tokenization, stemming, and
removing English stop words.

In the literature, there are numerous works assessing
DBR detection (or retrieval) approaches [48], [49]. Rakha
et al. [49] analyzed and assessed the changes between DBRs
before and after the offering of the Just-In-Time (JIT) DBR
recommendation feature in Bugzilla. The JIT duplicate
retrieval feature was introduced in 2011 for Bugzilla 4.0
[50]. The authors have discovered that DBRs after 2011 (the
period between 2012 and 2015) are less textually similar
than duplicate BRs before the activation of the JIT feature
in 2011.

In [51], Neysiani and Babamir proposed a study aimed
at assessing the best DBR detection (or retrieval) ap-
proaches. They analyzed both IR-based and Machine Learn-
ing (ML) approaches. The study has proven that ML-based
approaches are more effective and efficient than IR-based
approaches. The research was assessed just in the Android
BRE.

This section gives the most recent and relevant studies

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 221-238 (Jan-24) 225

regarding BurshraDBR’s contributions. Figure 3 illustrates
the key elements of BurshraDBR’s approach. The author
summarizes the suggested approach according to the fol-
lowing basic elements: inputs (i.e., BRs and Nr), out-
puts (i.e., duplicate or non-duplicate BR), used techniques
(i.e., LSI and FCA), evaluation metrics (e.g., recall), and
used data sets (e.g., Core, Firefox, and Eliot products from
Bugzilla).

Figure 3. The key elements of BurshraDBR approach.

In this study, the author extracts all the essential parts
for BurshraDBR from each BR, such as bug summary and
description (i.e., unstructured information). On the other
hand, some approaches utilize structured information such
as bug ID, product, and component. Table II shows the
type of information that each approach utilizes in order to
retrieve DBRs from MRs or BRE.

A study and comparison of current studies confirmed
that there are no works in the literature that use LSI and
FCA to retrieve DBRs. In this work, LSI and FCA tech-
niques are applied in order to retrieve DBRs. BushraDBR
exploits the bug’s summary and description to construct a
BR document. Also, BushraDBR visualizes the retrieved
TS scores between BRs. Table III shows the data sets
used in each study from the survey (i.e., related work).
The mini-systematic survey showed that the following data
sets are most commonly used in research papers: Eclipse,
OpenOffice, and Mozilla (cf. Table III).

Related work shows that there are several approaches to

TABLE II. Structured and unstructured information that is leveraged
by the selected approaches (i.e., survey).

Reference Structured Info Unstructur.

B
ug

ID

Pr
od

uc
t

C
om

po
ne

nt

Ty
pe

Su
m

m
ar

y

D
es

cr
ip

tio
n

.

Wang et al. [17] × ×

Sun et al. [40] × ×

Jalbert & Weimer [3] × ×

Sun et al. [41] × × × × ×

Hindle & Onucz. [4] × ×

Thung et al. [42] × ×

Kukkar et al. [11] × × ×

He et al. [43] × × × ×

Runeson et al. [44] × × ×

Rakha et al. [48] × × × × ×

Neysiani & Ba. [51] × × × × ×

BushraDBR ✓ ✓ ✓

TABLE III. Data sets that are utilized by the selected approaches
(i.e., survey).

Bug report data sets

R
ef

er
en

ce

E
cl

ip
se

Fi
re

fo
x

O
pe

nO
ffi

ce

M
oz

ill
a

A
nd

ro
id

So
ny

E
ri

cs
so

n
M

ob
ile

-

C
ya

no
ge

nm
od

N
et

B
ea

ns

G
no

m
e

K
9M

ai
l

Wa[17] × ×

Su[40] × × ×

Jalb[3] ×

Su[41] × × ×

Hin[4] × × × × × ×

Th[42] ×

Ku[11] × × × × × ×

He[43] × × ×

Ru[44] ×

Ra[48] × × ×

Ne[51] ×

Bushra ✓ ✓

retrieving DBRs. The author categorizes those approaches
into three categories: IR-based, ML-based, and hybrid solu-
tions. Table IV presents the majority of existing approaches
that retrieve DBRs. Table IV categorizes current studies
based on the type of approach used (i.e., IR, ML, or hybrid).

3. The DBR retrieval process: BushraDBR approach
The main hypothesis of BushraDBR approach is that

DBRs describe the same software failure and generally use

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

226 Ra’Fat Al-Msie’deen: BushraDBR — An Automatic Approach to Retrieving Duplicate Bug Reports.

TABLE IV. Review and classification of current studies relevant to DBR retrieval approaches.

ID Type of approach Approaches (or references)

01 IR-based approach

BushraDBR, Jalbert and Weimer [3], Sun et al. [41], Hindle and Onuczko [4], Thung
et al. [42], Runeson et al. [44], Rakha et al. [49], Li et al. [52], Li et al. [53], Sureka
and Jalote [54], Wang et al. [17], Rakha et al. [48], Banerjee et al. [55], Banerjee
et al. [56].

02 ML-based approach
Sun et al. [40], Kukkar et al. [11], He et al. [43], Deshmukh et al. [57], Aggarwal
et al. [58], Budhiraja et al. [59], Budhiraja et al. [60], Messaoud et al. [61], Wu
et al. [62], Panichella [63], Isotani et al. [64], Alipour et al. [65].

03 Hybrid approach (IR &
ML)

Bagal et al. [66], Tian et al. [67], Neysiani and Babamir [51], Nguyen et al. [68],
Jiang et al. [69], Pasala et al. [70], Feng et al. [71].

similar vocabularies. Also, BushraDBR approach referred
to the first reported BR for a particular bug in a software
system as a master (or original) BR, while it referred to
the subsequent BRs for the same bug as DBRs. Figure 4
shows two BRs that describe the same software failure and
use similar vocabularies (i.e., DBRs).

Figure 4. DBRs describe the same software failure and use similar
vocabularies.

The suggested approach accepts as inputs a set (or
subset) of BRs from BTS (or BRE) in addition to the
newly submitted BR from the software user (i.e., Nr). The
proposed approach retrieves BRs that are textually similar to
the newly reported BR if they exist as outputs. The contents

of each BR are textual information written in natural
language (i.e., BR document ← summary + description).
An overview of BushraDBR approach is presented in Figure
5.

Figure 5. The DBR retrieval process - BushraDBR approach.

This study aims to prevent DBRs from entering the
BTS. BushraDBR checks the BR and makes sure that it
is not textually similar to another BR that was previously
submitted to BTS. If a BR is similar to another BR, it is
ignored, and if it is unique, it is added to the BTS. This
process saves a lot of time, effort, and cost for the triager,
as he only deals with unique BR (i.e., non-duplicate). In
some cases, BRs may define the same bug (or fault) with
various words. In this circumstance, the suggested approach
may fail to retrieve these DBRs because they use various

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 221-238 (Jan-24) 227

vocabulary to describe the same bug. Table V displays all
bug reports for DSA [72].

According to the proposed approach, BushraDBR re-
trieves DBRs in three steps, as clarified in the following:

A. Preprocessing of BRs
Based on the MRs and Nr, the suggested approach

generates a document for each BR. This document is named
by the bug ID. The contents of each document are the bug’s
summary and description. Figure 6 shows the bug document
for the bug with ID 7 from Table V.

Figure 6. An example of a bug document generated by BushraDBR
approach.

The contents of each bug document are preprocessed
carefully (cf. Algorithm 1), where the stop words are re-
moved (e.g., my, of, to, from, a, an, for, the, etc.), the words
of each bug document are divided based on the camel-case
method (e.g., fillText → fill and text), and finally every
word of the document is returned to its root (e.g., drawing
→ draw).

Algorithm 1 shows the step-by-step procedure for the
preprocessing of BRs using BushraDBR approach. The
input instances of this algorithm are all BR documents from
MRs and new BR (i.e., Nr), while the output instances
are the processed BR documents (i.e., query and BR docu-
ments).

Natural language preprocessing is employed in the ma-
jority of current studies to process the textual information of
any software artifact document. BushraDBR preprocessing
steps involve extracting the text from each BR, tokenization
(or splitting the words of the BR), deleting (or removing)
English stop words, and, at last, word stemming. Table VI
details the preprocessing steps of BushraDBR approach.

Figure 7 shows an example of a preprocessed bug
document (cf. BR with bug ID 000007 from Table V). This
BR document was generated by the BushraDBR approach.
Only important words exist in this bug document. The pre-

Algorithm 1: Preprocessing of BR documents.
Data: Master Bug Reports Set (MRs) and New Bug

Report (Nr).
Result: Processed BR documents (i.e., query and

BR documents).
1 // Preprocessing of all BR documents.
2 for each bug report (BR) in MRs and Nr do
3 // Extracting BR contents.
4 Extract the bug ID, textual summary, and

description of each BR
5 // Splitting BR words (or tokenization) via the

camel-case splitting method [73].
6 Split the textual information of each BR into

words (or tokens)
7 // Removing English stop words from each BR

by using the author’s list of English stop words
[72].

8 Remove English stop words from each BR
document

9 // Stemming BR words with WordNet [74].
10 Return each word to its base (i.e., root or stem)
11 // The query document (i.e., Nr) is named with

its Bug ID.
12 Query document ← Nr document
13 // Each BR document (i.e., BR in MRs) is

named with its Bug ID.
14 BR document ← BR in MRs
15 return processed documents (query and BRs)

processing steps increase the accuracy of the LSI technique
and eliminate noise.

Figure 7. An example of a pre-processed bug document.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

228 Ra’Fat Al-Msie’deen: BushraDBR — An Automatic Approach to Retrieving Duplicate Bug Reports.

TABLE V. Bug reports from the drawing shapes application data set.

Bug ID Short summary of the bug Bug description
000001 The PDF viewer is very slow

for line drawings.
”PDF is very slow to load. The text parts of the PDF appear fast, but
every line drawing is very slow. While the expected result is that PDFs
with line drawings should show up a lot faster without any delay.”

000002 Images of the myOval() and
draw() functions are not dis-
played.

”The images in the draw() and myOval() functions are not displayed well.
While the expected result is that for every condition in the draw() and
myOval() functions, the images must be displayed well.”

000003 In some specific cases, the
fillText function doesn’t draw
anything.

”In a very complex environment with a lot of sketches, the fillText method
sometimes doesn’t run probably and produces nothing. Thus, nothing was
printed in several situations.”

000004 Drawing text in 2D is slow. ”The function of the 2D text doesn’t efficiently scale to support drawing
a large number of 2D texts on the screen at once. The performance of the
DSA should be comparable to other drawing applications.”

000005 Problem with the drawing of
1px-wide lines.

”The inner triangle is not 1 pixel wide and is gray rather than blue. The
draw() function should draw a one-pixel-wide line.”

000006 No Scrolling of the art site
contents by utilizing the mouse
wheel.

”Sometimes you cannot use the mouse wheel to scroll through the art
site’s contents. The mouse wheel is not running well on some art sites.”

000007 Incapable of using the mouse
wheel to scroll on an art site.

”Scrolling the contents of the art site by clicking the scroll wheel of the
mouse device does not always work well.”

TABLE VI. BushraDBR preprocessing steps, explanation, and a real-world example from the DSA data set.

Step ID Step name Explanation Example
1 Extracting bug

content
Obtaining the text from each BR. Images of the myOval() and

draw() functions are not displayed,
... etc. (cf. BR with bug ID 000002
from Table V)

2 Splitting words
or tokenization

Eliminating digits (e.g., 0, 5, 9), punctuation (e.g., !,
?, :), and special characters (e.g., @, $, &, #, %)
from the text of each BR and splitting words based
on the camel-case method [75].

images, of, the, my, oval, and,
draw, functions, are, not, dis-
played.

3 Removing stop
words

Deleting prepositions, conjunctions, and pronouns
from text, such as: ”a”, ”the”, ”and”, ”of”, ”are”,
”an”, ... etc.

images, oval, draw, functions, dis-
played.

4 Stemming Returning every word in the text to its root or stem
[76].

image, oval, draw, function, dis-
play.

B. Measuring textual similarity between BRs using LSI
BushraDBR approach uses, in its core work, the LSI

and FCA techniques. LSI calculates the TS scores between
BRs, while FCA clusters DBRs together. Figure 8 shows
the DBR retrieval process using LSI and FCA techniques.

BushraDBR bases the retrieval of DBR on the measure-
ment of TS between BRs. This TS measure is computed
using LSI. BushraDBR depends on the truth that DBRs
concerned with describing a software fault are textually
closer to one another than to the remainder of BRs in
the data set. To calculate TS between newly submitted
BR (Nr) and BRs of the data set (MRs), BushraDBR
approach goes through three steps: creating the LSI corpus
(i.e., BushraDBR preprocessing steps; cf. Table VI); cre-
ating the Term-Document Matrix (TDM) (resp. the Term-
Query Matrix (TQM)) for BRs (resp. Nr); and finally,

creating the Cosine Similarity Matrix (CSM).

In order to employ LSI to find TS, BushraDBR creates a
corpus that involves a set of bug documents and query(s). In
BushraDBR case, each BR in BRE represents a document,
while the newly submitted BR represents a query.

TDM is of size r×i, where r is the number of terms used
in the bug documents and i is the number of bug documents
in the data set (or BRE). While a TQM is of size r × j,
where r is the number of terms used in newly submitted
bug document and j is the number of newly submitted bug
documents (i.e., j is equal to 1). The terms for both matrices
are various because they are obtained from different bug
documents (i.e., Nr and BRs from BRE). Table VII shows
the TDM, while Table VIII shows the TQM.

BushraDBR uses the LSI technique to rank bug doc-

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 221-238 (Jan-24) 229

Figure 8. Retrieving DBRs using LSI and FCA techniques —
BushraDBR approach.

TABLE VII. TDM for bug documents from the DSA data set
(partial).

0001 0002 0003 0004 0005 0006
method 0 0 1 0 0 0

art 0 0 0 0 0 3
site 0 0 0 0 0 3

mouse 0 0 0 0 0 3
wheel 0 0 0 0 0 3
pixel 0 0 0 0 2 0

function 0 3 1 1 1 0
content 0 0 0 0 0 2
draw 1 3 1 3 3 0
oval 0 3 0 0 0 0

image 0 3 0 0 0 0
slow 3 0 0 1 0 0

..

uments in the BTS (i.e., 0001 to 0006) for the query
document (i.e., bug with the ID 0007), which is the new bug
document (i.e., Nr). BushraDBR sets the weights of terms
and constructs TDM and TQM as illustrated in Tables VII
and VIII.

TABLE VIII. TQM for the query document (i.e., Nr) from the DSA
data set (partial).

000007
art 2

wheel 2
site 2
use 1

scroll 3
well 1

content 1
mouse 2

.. ..

Similarity between bug documents (i.e., Nr and BRs
from BRE) is defined by a CSM (cf. Table IX). The columns
of CSM represent vectors of BRs from BRE, while the rows
of CSM represent vectors of queries (i.e., Nr). Equation 1
provides a Cosine Similarity (CS) that is used to calculate
TS between BRs [77] [78].

CS (BRq, BR j) =
−−→
BRq ·

−−→
BR j

|
−−−→
BRq||

−−→
BR j|

=

n∑
i=1

Wi,q ∗Wi, j√
n∑

i=1
W2

i,q

√
n∑

i=1
W2

i, j

(1)

TS between documents is calculated as a CS shown in
Equation 1, where BRq stands for the query vector and BR j
for the document vector. While the Wi,q and Wi, j measure
the weights of query and document vectors, respectively.
Table IX shows the calculated similarity scores between
the submitted BR (i.e., bug with ID 7) and the BRs from
the DSA data set.

TABLE IX. Similarity scores (or CSM) of the DSA data set
(i.e., query and BR documents).

000001 000002 000003 000004 000005 000006
7 -0.00043 0.01088 -0.03496 0.00317 0.00014 0.99932

Algorithm 2 shows the step-by-step procedure for mea-
suring TS between BR documents via LSI. The input
instances of this algorithm are the query document (i.e., Nr),
BR documents, and the chosen threshold (Thr), while the
output instances are the CSM and a list of DBRs (LDRs).

Figure 9 shows the TS values between Nr and BRs
from DSA as a directed graph. BushraDBR uses an external
library (i.e., Graphviz) to visualize the TS values between
query and BR documents [79]. The directed graph in
Figure 9 clearly shows the retrieved DBRs by BushraDBR
approach.

C. Retrieving DBRs using FCA
BushraDBR employs FCA to cluster similar BRs to-

gether based on LSI results (i.e., the numerical CS matrix).
BushraDBR transforms the CSM resulting from the LSI

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

230 Ra’Fat Al-Msie’deen: BushraDBR — An Automatic Approach to Retrieving Duplicate Bug Reports.

Algorithm 2: Measuring TS between BRs via LSI.
Data: Query document (Nr), BR documents (BRs

from MRs), and Threshold (Thr).
Result: Cosine Similarity Matrix (CSM) and List of

DBRs (LDRs).
1 CSM [ri] [c j] ← new double [Nrn][BRn]
2 LDRs ← ∅
3 // Compute the TS values between the query

document (Nr) and all BR documents (BRs from
MRs) based on the given Threshold (Thr).

4 for each query (Nr) do
5 // Compute the CS value between the query and

each BR from the MRs.
6 for each BR document do
7 Compute the CS value between the query

and each BR document.
8 CSM [ri] [c j] ← CS (query [BRq], BR

document [BR j])
9 if CS ≥ Thr then

10 // The query document (Nr) is
considered duplicate, and the engineer
(or triager) includes it in the LDRs.

11 LDRs ← Query document (Nr)
12 else
13 // The query document (Nr) is

considered non-duplicate (unique BR),
and the engineer (or triager) includes it
in the MRs.

14 MRs ← Query document (Nr)

15 return CSM and LDRs

technique into a Binary Formal Context (BFC). Table X
shows an example of a Formal Context (FC). In this work,
BushraDBR uses a standard threshold (Thr) for CS, which is
equal to 0.80 (CS θ(BRq,BR j)

0.80). This implies that only pairs of
BRs with a computed TS greater than or equal to the chosen
threshold (i.e., TS ≥ 0.80) are deemed DBRs. The reason (or
rational explanation) behind the choice of this threshold is
that DBRs generally use very similar vocabulary to describe
the same bug. Also, a study of samples of DBRs available
in related work (such as [5], [11], [40], and [43]) confirms
the existence of common vocabulary on a large scale among
DBRs.

TABLE X. A formal context of the drawing shapes application’s CS
matrix (cf. Table IX).

0001 0002 0003 0004 0005 0006
0007 0 0 0 0 0 1

As an instance, in the BFC of Table X, the Nr with
ID 0007 is associated with the BR document with ID 0006
since their TS is equal to ”0.99” (cf. Table IX), which is
higher than the chosen threshold (0.80). On the other hand,
the Nr document with ID 0007 and the BR document with

Figure 9. Textual similarity values between the query document
(i.e., Nr) and BRs as a directed graph.

ID 0002 are not associated since their similarity is equal
to ”0.01”, which is less than the selected threshold. The
resulting AOC-poset [80] is presented in Figure 10. This
AOC-poset is comprised of a set of concepts. The extent
and intent of some concepts link similar BR documents
into one cluster (cf. Concept 0 in Figure 10).

Let’s imagine that a software developer (or triager)
wants to retrieve (or check) similar BRs for the newly
submitted BR by a software user (i.e., the bug with ID 7
from Table V). The BRs are created (or written) in English
(i.e., natural language). Each bug has a summary (or a short
description) and a detailed description. Let’s assume that
the software developer is using the BushraDBR approach
to check if a newly reported BR is a duplicate of existing
BRs in the DSA data set or not. The software developer is
checking similar BRs from BRE in order to retrieve possible
DBRs regarding the recently submitted BR. Let’s assume
that the BR with ID 000007 is the real duplicate of the BR
with ID 000006 based on the computed TS between those
BRs through LSI. In this case, BushraDBR approach will
classify the Nr as DBR since the suggested approach will
find a lot of textually matched terms between BR documents
with IDs 7 and 6. So, it is essential to consider all the textual
information that is used to construct BR in BushraDBR
approach.

Algorithm 3 shows the step-by-step procedure to retrieve
DBRs using FCA. The input instances of this algorithm
are CSM and Thr, while the output instances are AOCBFC

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 221-238 (Jan-24) 231

(i.e., the AOC-poset linked with BFC) and a list of DBRs
(LDRs).

Algorithm 3: Retrieving DBRs using FCA.
1 // A formal context is represented by the triple F =

(O, A, Br). In this triple, O is an object set
(i.e., Nr) and A is an attribute set (i.e., BRs from
MRs), while Br is a binary relation (i.e., Br ⊆ O ×
A).

2 // BFC: a formal context, where BFC = (O, A, Br).
Data: Cosine Similarity Matrix (CSM) and

Threshold (Thr).
Result: AOCBFC , ≤s: the AOC-poset linked with

BFC and List of DBRs (LDRs).
3 BFC [Oi] [A j] ← new int [Nrn][BRn]
4 LDRs ← ∅
5 Thr ← 0.80
6 AOCBFC ← ∅

7 // Transform the (numerical) CSM into a Binary
Formal Context (BFC) based on the chosen
threshold value, which is 0.80.

8 for Oi ← 0; Oi < Nrn; Oi ← Oi + 1 do
9 for A j ← 0; A j < BRn; A j ← A j + 1 do

10 if CSM [Oi] [A j] ≥ Thr then
11 BFC [Oi][A j] ← 1
12 else
13 BFC [Oi][A j] ← 0

14 // Apply the FCA clustering technique via the
Eclipse eRCA platform [81].

15 Generate the AOC-poset based on BFC
16 AOCBFC ← eRCA(BFC)
17 // The resulting AOC-poset is made up of several

formal concepts (e.g., concept 0, and concept 1).
18 for each concept C ∈ AOCBFC do
19 // Usually, the extent and intent of the top

concept (i.e., ⊤) include DBRs (cf. Figure 10),
if any.

20 if extent(C) , ∅ and intent(C) , ∅ then
21 LDRs ← extent(C)
22 else if extent(C) , ∅ and intent(C) = ∅ then
23 MRs ← extent(C)
24 else if extent(C) = ∅ and intent(C) , ∅ then
25 intent(C) < LDRs
26 intent(C) ∈ MRs

27 return AOCBFC and LDRs

The efficiency of BushraDBR approach is assessed by
its precision, recall, and F-Measure metrics [82]. For a given
new BR document (i.e., query or Nr), the recall metric is
the ratio of rightly retrieved bug documents to the whole
number of relevant BR documents, whereas the precision
metric is the ratio of rightly retrieved BR documents to
the complete number of retrieved BR documents. The F-
Measure metric determines a trade-off among recall and

precision metrics. Thus, F-Measure offers a high score
just in conditions where both metrics (i.e., precision and
recall) are high. Recall, precision, and F-measure metrics
are presented in Equations 2, 3, and 4. All the evaluation
metrics of the suggested approach have values between zero
and one.

Recall =
relevant BR documents

⋂
retrieved BR doc.

relevant BR documents
(2)

Precision =
relevant BR doc.

⋂
retrieved BR doc.

retrieved BR documents
(3)

F − Measure = 2 ×
Precision · Recall
Precision + Recall

(4)

The suggested approach relies on unstructured informa-
tion (i.e., bug summary and description) to retrieve DBRs
from BTS. Structured information, such as component and
product, does not improve the results of IR-based solutions
[43].

4. Experimentation
To validate BushraDBR approach, the author conducted

experiments on several data sets from Bugzilla [25]. To
evaluate the results, the author used recall, precision, and
F-measure metrics. To implement BushraDBR approach,
a system having Windows 10 Education, Intel Core i7
processor, CPU @ 2.40GHz, and 8GB RAM is used.

In this work, the Eliot [83] open-source data set is
adopted, which is produced and available at Bugzilla [84].
Eliot is the Mozilla symbolication service, and it’s part of
the Tecken project [85]. Tecken is a project for managing
and utilizing symbols at Mozilla. The Eliot product consists
of two components, which are symbolication and general.
The characteristics of this data set are shown in Table XI.

The Firefox product [86] is a set of shared components
utilized by the Mozilla foundation’s web browser. One
of these components is the WebPayments UI [87]. The
WebPayments UI component of Firefox product is a user
interface for the WebPayments (i.e., payment request API
and payment handler API). The characteristics of WebPay-
ments UI data set are given in Table XI.

The Audio/Video component belongs to the core product
[27]. This component deals with problems related to media
(i.e., video and audio) [88]. The data set of Audio/Video
component consists of 305 BRs.

The DOM editor component belongs to the core product
[27]. This component includes bugs for the DOM editor on
web pages (i.e., errors with editing text on the web pages).
Related HTML features for this component are: ”<input
type=text>, <textarea>, contenteditable, and the design-

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

232 Ra’Fat Al-Msie’deen: BushraDBR — An Automatic Approach to Retrieving Duplicate Bug Reports.

Mode API”. The data set of the DOM editor component
contains 1322 BRs [89].

The most essential LSI parameter is the number of
selected term-topics (aka. the number of topics). The
BushraDBR approach cannot use a constant number of
topics since it deals with different data sets. Table XI shows
the selected number of topics (i.e., K) for each data set.

The reader can download all BRs of any data set from
Bugzilla as an XML file. BushraDBR approach generates all
BR documents based on this XML file. BushraDBR names
each BR document by the same bug ID in the XML file.

In this study, a threshold of 0.80 (i.e., Thr ← 0.80) was
chosen to retrieve DBRs. This means that BRs with a TS
value equal to or greater than 0.80 are considered DBRs.
The reason for choosing this threshold is that BRs that use
similar vocabulary with a percentage greater than or equal
to 0.80 are mostly duplicates. In fact, it is not possible
for a developer to find two reports that use exactly the
same vocabulary (100%). But the developer can find two
reports that use common vocabulary in a large ratio. BRs
are usually submitted by different users to BTS. Each user
uses different vocabulary to describe the submitted BR. If
users submit many BRs to describe the same error, they will
most likely use similar vocabulary to describe it.

Experiments show the ability of BushraDBR approach
to retrieve DBRs in an efficient and accurate manner. For
instance, results show that BRs with IDs 1819152 and
1819151 from the Eliot data set are DBRs. In this case, the
BR with ID 1819152 (i.e., Nr) is ignored and included in
the LDRs. Thus, BushraDBR approach saves the engineer’s
time and effort, as there is no need to address this duplicate
BR. Table XII shows the TS obtained from the Eliot data
set.

As an illustrative example, let’s say that a user has
reported a BR regarding the WebPayments UI component,
which belongs to the Firefox browser, by using Bugzilla
BTS. The user has pressed the link to insert a new BR.
A user added a summary for the BR as follows: ”Need
animation on the pay submit button”. Then he inserted
a description to this BR as follows: ”As shown in UX
specs, once users click on the pay submit button, we
need to have an animation to show order payment sent
to merchant”. Finally, he pressed the submit BR button.
By using BushraDBR, the approach finds that the newly
added BR with ID 1510066 is very similar to the BR with
ID 1490824 from the WebPayments UI data set (cf. Table
XIII). In this case, the newly submitted BR is ignored and
included in the LDRs.

A complete tutorial showing how to implement
BushraDBR on the audio-video data set is available on
BushraDBR web page [72]. All steps involved in the
approach are fully illustrated. The purpose of this tutorial
is to show how the implementation of BushraDBR works.

Table XIV shows the TS of the Audio/Video data set.

The key limitation of utilizing FCA as a clustering
technique in BushraDBR is that FCA works only with BFC
(i.e., 1 or 0). Where BushraDBR approach considers that
the similarity value of 0.97 (resp. 0.79) is the same as 0.80
(resp. 0.05). Table XV shows the TS of the DOM editor
data set.

Also, results show that BushraDBR approach is able to
retrieve DBRs when these BRs share a common vocabulary.
Otherwise, the approach will fail to retrieve DBRs. When
the users use different vocabulary to describe the same bug,
BushraDBR will be unable to retrieve DBRs. This means
that the LSI technique may not be dependable (or should
be improved with ML methods) in all cases to retrieve
DBRs. For example, if we have two BRs describing the
same bug and the description of the first is written as
”doesn’t run in dialogues”, while the description of the
second is written as ”no longer runs as anticipated”. In
this case, both descriptions have the same meaning but use
different vocabulary. BushraDBR will consider both reports
as original BRs.

Figure 10 shows the AOC-poset for each data set. The
AOC-poset of Figure 10 shows two formal concepts for
each data set (i.e., Concept 0 and Concept 1). In general,
the top concept (i.e., ⊤) contains DBRs, if any. For example,
the extent and intent of Concept 0 include similar BRs
(i.e., DBRs). Where the extent of Concept 0 contains the
query document (i.e., Nr), while the intent of Concept 0
represents a similar BR from BRE.

Table XVI shows the evaluation metrics for
BushraDBR’s results from different data sets. Considering
the recall metric, its value is 1 (or 100%) for all retrieved
DBRs from the different data sets. This implies that all
DBRs are correctly retrieved. Also, the precision metric
value is high (100%) for all retrieved DBRs. This means
that all retrieved DBRs are relevant. The F-measure value
depends on the values of recall and precision metrics; thus,
its value is 1 for all retrieved DBRs.

In the audio/video data set, BushraDBR retrieves the
report with ID 1545237 as a duplicate of the report with
ID 1545235. The author performed a manual check of the
content of each BR. The author found that the summary
and description of both reports are textually similar to each
other. Where the TS value between the two reports is equal
to 0.84855 (cf. Table XIV). After conducting this manual
evaluation of BushraDBR results, the evaluation metrics
(cf. Table XVI) proved the accuracy, strength, and solidity
of BushraDBR to retrieve DBRs. Thus, BushraDBR is able
to prevent DBRs using LSI and FCA.

BushraDBR approach can be used only to retrieve DBRs
from BTS based on the recently submitted BR. In this work,
BushraDBR uses textual information to retrieve DBRs; thus,
BRs vocabulary is very sensitive to BushraDBR (i.e., a

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 221-238 (Jan-24) 233

TABLE XI. Characteristics of the data sets that are used in experiments.

ID Product name Component (i.e., Data set) Total number of BRs Number of DBRs K
1 Drawing shapes application DSA 0007 001 006
2 Eliot Symbolication and General 0017 001 016
3 Firefox WebPayments UI 0126 001 125
4 Core Audio/Video 0305 001 304
5 Core DOM: Editor 1322 001 030

TABLE XII. Cosine similarity matrix for the Eliot data set.

1475334 1649535 1707879 1729698 1741434 1745533 1768863 1801169 1801212
001819152 -0.00294 -0.00188 0.00907 0.01036 0.04272 -0.00197 0.00670 -0.01518 0.01662

1811236 1811299 1812345 1814509 1815981 1815982 1819151
001819152 -0.00454 -0.00030 0.02736 -0.01092 0.00708 -0.00400 0.99822

TABLE XIII. Cosine similarity matrix for the WebPayments UI data set (partial).

1427949 1427953 1432909 1432940 1490824 1432943 1432945 1432958 1435114 ..
1510066 0.01822 0.00348 0.02232 0.05142 0.92465 0.00149 0.00331 0.01348 0.00261 ..

TABLE XIV. Cosine similarity matrix for the Audio/Video data set (partial).

1368902 1532646 1545235 1545847 1561960 1565493 1571258 1571583 1571912 ..
1545237 0.00107 0.00186 0.84855 0.00752 0.00270 0.00391 0.00202 0.00636 0.00293 ..

TABLE XV. Cosine similarity matrix for the DOM editor data set (partial).

1005776 362694 176525 1311623 1043099 666037 1016372 229572 579763 ..
001841744 0.05002 0.07664 0.96201 0.05911 0.00183 0.07517 0.01558 0.08070 0.01767 ..

TABLE XVI. Evaluation metrics for BushraDBR results.

ID Data set Recall Precision F-measure
01 DSA 100% 100% 100%
02 Eliot 100% 100% 100%
03 WebPayments.. 100% 100% 100%
04 Audio/Video 100% 100% 100%
05 DOM: editor 100% 100% 100%

threat to internal validity). Hence, based on the vocabulary
used, BushraDBR may succeed or fail. In this study, the
author validates his approach using different data sets from
Bugzilla. This could pose a challenge to applying the
suggested approach to another BTS in general (i.e., a threat
to external validity). However, the considered data sets are
popular and cover different sizes. BushraDBR assumes that
the user has constructed the submitted BR correctly in terms
of the report summary and description. Sometimes it is
possible that the BRs used are incorrectly constructed or
that some parts of the BR are missing (e.g., report without
description), which may cause the proposed approach to be
inaccurate (i.e., a threat to construct validity).

Bugzilla [25] offers a feature that suggests similar BRs
when a user submits a new BR (cf. Figure 11). The current
implementation of this feature is only based on text in
the summary part of BRs and does not take into account

the description part of BRs. Also, the implementation does
not count the frequency of words that arise in BRs. Thus,
BushraDBR tool would retrieve DBRs better by using both
the summary and description parts of BRs. Mozilla utilizes
Bugzilla as its BTS, and Bugzilla implements an important
feature to retrieve DBRs called Full-Text Search (FTS) [5].
In general, this feature relies on a BRs database (BRE) and
issues SQL queries to search in the BRs database [90].

In order to retrieve DBRs via BushraDBR approach, the
initial prototype was developed and accessible through the
BushraDBR web page [72]. To extract the report summary
and description, the author has established an XML parser
for this target based on the Jdom library [91]. Jdom is
an open-source Java-based solution for reading and ma-
nipulating XML files. In order to use LSI, the author has
built an LSI implementation available on BushraDBR web
page based on the JAMA package [92]. JAMA is a Java
library for algebra, and it is able to find the Singular Value
Decomposition (SVD) for specific documents belonging
to a single corpus. For applying FCA, the author utilized
the eRCA tool [81]. Finally, to visualize the AOC-poset
(resp. similarity scores between BRs), BushraDBR employs
the Graphviz library [79] in its implementation.

5. Conclusion and future work
This paper has introduced a novel approach called

BushraDBR targeted at automatically retrieving DBRs using

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

234 Ra’Fat Al-Msie’deen: BushraDBR — An Automatic Approach to Retrieving Duplicate Bug Reports.

Figure 10. The AOC-poset for each data set in the experiments: (A)
DSA, (B) Eliot, (C) WebPayments UI [partial], (D) Audio/Video
[partial], and (E) DOM editor [partial].

Figure 11. An example of the DBR retrieval feature in Bugzilla
based on the bug summary.

LSI and FCA. BushraDBR aimed to prevent developers
from wasting their resources, such as effort and time, on
previously submitted BRs. The novelty of BushraDBR is
that it exploits textual data in BRs to apply LSI and FCA
techniques in an efficient way to retrieve DBRs. BushraDBR
prevents DBRs before they occur by comparing the newly
reported BR with the rest of the BRs in the repository.
The suggested approach had been validated and evaluated

on different data sets from Bugzilla. Experiments show
the capacity of BushraDBR approach to retrieve DBRs in
an efficient and accurate manner. Regarding BushraDBR’s
future work, the author plans to extend the current approach
by developing an ML-based solution to retrieve DBRs and
prevent duplicates before they start. Also, he plans to com-
pare BushraDBR (i.e., an IR-based approach) with current
ML-based approaches. Furthermore, additional empirical
tests can be conducted to verify BushraDBR approach
using open-source and industrial data sets. There is also
a necessary need to conduct a comprehensive survey and
make comparisons between all current approaches relevant
to DBR retrieval.

References
[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”

in 28th International Conference on Software Engineering (ICSE
2006), Shanghai, China, May 20-28, 2006, L. J. Osterweil, H. D.
Rombach, and M. L. Soffa, Eds. ACM, 2006, pp. 361–370.
[Online]. Available: https://doi.org/10.1145/1134285.1134336

[2] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu,
“How practitioners perceive automated bug report management
techniques,” IEEE Trans. Software Eng., vol. 46, no. 8, pp.
836–862, 2020. [Online]. Available: https://doi.org/10.1109/TSE.
2018.2870414

[3] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in The 38th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2008,
June 24-27, 2008, Anchorage, Alaska, USA, Proceedings. IEEE
Computer Society, 2008, pp. 52–61. [Online]. Available: https:
//doi.org/10.1109/DSN.2008.4630070

[4] A. Hindle and C. Onuczko, “Preventing duplicate bug reports
by continuously querying bug reports,” Empir. Softw. Eng.,
vol. 24, no. 2, pp. 902–936, 2019. [Online]. Available: https:
//doi.org/10.1007/s10664-018-9643-4

[5] T. Zhang, D. Han, V. Vinayakarao, I. C. Irsan, B. Xu, F. Thung,
D. Lo, and L. Jiang, “Duplicate bug report detection: How far are
we?” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 4, pp. 97:1–
97:32, 2023. [Online]. Available: https://doi.org/10.1145/3576042

[6] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter,
and C. Weiss, “What makes a good bug report?” IEEE Trans.
Software Eng., vol. 36, no. 5, pp. 618–643, 2010. [Online].
Available: https://doi.org/10.1109/TSE.2010.63

[7] O. Chaparro, “Automated analysis of bug descriptions to
support bug reporting and resolution,” Ph.D. dissertation, The
University of Texas at Dallas, 2019. [Online]. Available: https:
//ojcchar.github.io/publications/14-dissertation

[8] J. L. Davidson, N. Mohan, and C. Jensen, “Coping with duplicate
bug reports in free/open source software projects,” in 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2011, Pittsburgh, PA, USA, September 18-22, 2011,
G. Costagliola, A. J. Ko, A. Cypher, J. Nichols, C. Scaffidi,
C. Kelleher, and B. A. Myers, Eds. IEEE, 2011, pp. 101–108.
[Online]. Available: https://doi.org/10.1109/VLHCC.2011.6070386

[9] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim,
“Duplicate bug reports considered harmful ... really?” in 24th
IEEE International Conference on Software Maintenance (ICSM

https:// journal.uob.edu.bh/

https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1109/TSE.2018.2870414
https://doi.org/10.1109/TSE.2018.2870414
https://doi.org/10.1109/DSN.2008.4630070
https://doi.org/10.1109/DSN.2008.4630070
https://doi.org/10.1007/s10664-018-9643-4
https://doi.org/10.1007/s10664-018-9643-4
https://doi.org/10.1145/3576042
https://doi.org/10.1109/TSE.2010.63
https://ojcchar.github.io/publications/14-dissertation
https://ojcchar.github.io/publications/14-dissertation
https://doi.org/10.1109/VLHCC.2011.6070386
https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 221-238 (Jan-24) 235

2008), September 28 - October 4, 2008, Beijing, China. IEEE
Computer Society, 2008, pp. 337–345. [Online]. Available:
https://doi.org/10.1109/ICSM.2008.4658082

[10] Palvika, Shatakshi, Y. Sharma, A. Dagur, and R. Chaturvedi,
“Automated bug reporting system with keyword-driven framework,”
in Soft Computing and Signal Processing, J. Wang, G. R. M.
Reddy, V. K. Prasad, and V. S. Reddy, Eds. Singapore:
Springer Singapore, 2019, pp. 271–277. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-981-13-3393-4 28

[11] A. Kukkar, R. Mohana, Y. Kumar, A. Nayyar, M. Bilal, and
K. Kwak, “Duplicate bug report detection and classification
system based on deep learning technique,” IEEE Access,
vol. 8, pp. 200 749–200 763, 2020. [Online]. Available: https:
//doi.org/10.1109/ACCESS.2020.3033045

[12] T. S. S. Angel, G. S. Kumar, V. M. Sehgal, and G. Nayak, “Effective
bug processing and tracking system,” Journal of Computational and
Theoretical Nanoscience, vol. 15, no. 8, pp. 2604–2606, 2018.

[13] IEEE/ISO/IEC-14764-2006, “ISO/IEC/IEEE international standard
for software engineering - software life cycle processes -
maintenance,” IEEE Computer Society, 2006. [Online]. Available:
https://standards.ieee.org/ieee/14764/3498/

[14] R. Al-Msie’deen, A. H. Blasi, and M. A. Alsuwaiket, “Constructing
a software requirements specification and design for electronic it
news magazine system,” International Journal of Advanced and
Applied Sciences, vol. 8, no. 11, pp. 104–118, 2021.

[15] C. Gupta, P. R. M. Inácio, and M. M. Freire, “Improving software
maintenance with improved bug triaging,” J. King Saud Univ.
Comput. Inf. Sci., vol. 34, no. 10 Part A, pp. 8757–8764, 2022.
[Online]. Available: https://doi.org/10.1016/j.jksuci.2021.10.011

[16] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open
bug repository,” in Proceedings of the 2005 OOPSLA workshop on
Eclipse Technology eXchange, ETX 2005, San Diego, California,
USA, October 16-17, 2005, M. D. Storey, M. G. Burke, L. Cheng,
and A. van der Hoek, Eds. ACM, 2005, pp. 35–39. [Online].
Available: https://doi.org/10.1145/1117696.1117704

[17] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
approach to detecting duplicate bug reports using natural
language and execution information,” in 30th International
Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 10-18, 2008, W. Schäfer, M. B. Dwyer, and
V. Gruhn, Eds. ACM, 2008, pp. 461–470. [Online]. Available:
https://doi.org/10.1145/1368088.1368151

[18] R. Al-Msie’deen, H. E. Salman, A. H. Blasi, and M. A. Alsuwaiket,
“Naming the identified feature implementation blocks from software
source code,” Journal of Communications Software and Systems,
vol. 18, no. 2, pp. 101–110, 2022.

[19] R. A. Al-Msie’deen and A. H. Blasi, “Software evolution un-
derstanding: Automatic extraction of software identifiers map for
object-oriented software systems,” Journal of Communications Soft-
ware and Systems, vol. 17, no. 1, pp. 20–28, 2021.

[20] R. Al-Msie’deen, “Requirements traceability: Recovering and visu-
alizing traceability links between requirements and source code of
object-oriented software systems,” International Journal of Comput-
ing and Digital Systems, vol. 14, no. 1, pp. 279–295, 2023.

[21] R. Al-Msie’deen and A. Blasi, “The impact of the object-oriented

software evolution on software metrics: The iris approach,” Indian
Journal of Science and Technology, vol. 11, no. 8, pp. 1–8, 2018.

[22] R. Al-Msie’deen, Object-oriented Software Documentation. Lap
Lambert Academic Publishing, 2019.

[23] L. Kang, “Automated duplicate bug reports detection - an experi-
ment at axis communication ab,” Master’s thesis, Blekinge Institute
of Technology, Karlskrona, Sweden, 2017.

[24] M. S. Rakha, W. Shang, and A. E. Hassan, “Studying the
needed effort for identifying duplicate issues,” Empir. Softw.
Eng., vol. 21, no. 5, pp. 1960–1989, 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9404-6

[25] Bugzilla-Mozilla. (2023) Bugzilla. [Online]. Available: https:
//bugzilla.mozilla.org/home

[26] B. Mozilla. (2023) CSS parsing and computation
component. [Online]. Available: https://bugzilla.mozilla.org/
buglist.cgi?product=Core&component=CSS%20Parsing%20and%
20Computation&resolution=---&list id=16624705

[27] Bugzilla.Mozilla. (2023) Core product. [Online]. Available: https:
//bugzilla.mozilla.org/describecomponents.cgi?product=Core

[28] Bug-671128-description. (2023) Bug 671128. [Online]. Available:
https://bugzilla.mozilla.org/show bug.cgi?id=671128

[29] Bug-803372-description. (2023) Bug 803372. [Online]. Available:
https://bugzilla.mozilla.org/show bug.cgi?id=803372

[30] H. E. Salman, A. Seriai, C. Dony, and R. Al-Msie’deen,
“Recovering traceability links between feature models and source
code of product variants,” in Proceedings of the VARiability
for You Workshop - Variability Modeling Made Useful for
Everyone, VARY ’12, Innsbruck, Austria, September 30, 2012,
Ø. Haugen, J. Jézéquel, A. Wasowski, B. Møller-Pedersen, and
K. Czarnecki, Eds. ACM, 2012, pp. 21–25. [Online]. Available:
https://doi.org/10.1145/2425415.2425420

[31] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, and S. Vauttier,
“Automatic documentation of [mined] feature implementations from
source code elements and use-case diagrams with the REVPLINE
approach,” Int. J. Softw. Eng. Knowl. Eng., vol. 24, no. 10, pp.
1413–1438, 2014.

[32] R. AL-msie’deen, M. Huchard, A.-D. Seriai, C. Urtado, S. Vauttier,
and A. Al-Khlifat, “Concept lattices: A representation space to
structure software variability,” in 2014 5th International Conference
on Information and Communication Systems (ICICS), 2014, pp. 1–6.

[33] R. Al-Msie’deen, M. Huchard, and C. Urtado, Reverse Engineering
Feature Models. Lap Lambert Academic Publishing, 2014.

[34] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier,
and H. E. Salman, “Feature location in a collection of software
product variants using formal concept analysis,” in Safe and Secure
Software Reuse - 13th International Conference on Software Reuse,
ICSR 2013, Pisa, Italy, June 18-20. Proceedings, ser. Lecture Notes
in Computer Science, J. M. Favaro and M. Morisio, Eds., vol. 7925.
Springer, 2013, pp. 302–307.

[35] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, and
S. Vauttier, “Reverse engineering feature models from software
configurations using formal concept analysis,” in Proceedings of
the Eleventh International Conference on Concept Lattices and

https:// journal.uob.edu.bh/

https://doi.org/10.1109/ICSM.2008.4658082
https://link.springer.com/chapter/10.1007/978-981-13-3393-4_28
https://doi.org/10.1109/ACCESS.2020.3033045
https://doi.org/10.1109/ACCESS.2020.3033045
https://standards.ieee.org/ieee/14764/3498/
https://doi.org/10.1016/j.jksuci.2021.10.011
https://doi.org/10.1145/1117696.1117704
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1007/s10664-015-9404-6
https://bugzilla.mozilla.org/home
https://bugzilla.mozilla.org/home
https://bugzilla.mozilla.org/buglist.cgi?product=Core&component=CSS%20Parsing%20and%20Computation&resolution=---&list_id=16624705
https://bugzilla.mozilla.org/buglist.cgi?product=Core&component=CSS%20Parsing%20and%20Computation&resolution=---&list_id=16624705
https://bugzilla.mozilla.org/buglist.cgi?product=Core&component=CSS%20Parsing%20and%20Computation&resolution=---&list_id=16624705
https://bugzilla.mozilla.org/describecomponents.cgi?product=Core
https://bugzilla.mozilla.org/describecomponents.cgi?product=Core
https://bugzilla.mozilla.org/show_bug.cgi?id=671128
https://bugzilla.mozilla.org/show_bug.cgi?id=803372
https://doi.org/10.1145/2425415.2425420
https://journal.uob.edu.bh/

236 Ra’Fat Al-Msie’deen: BushraDBR — An Automatic Approach to Retrieving Duplicate Bug Reports.

Their Applications, Košice, Slovakia, October 7-10, 2014, ser.
CEUR Workshop Proceedings, K. Bertet and S. Rudolph, Eds.,
vol. 1252. CEUR-WS.org, 2014, pp. 95–106. [Online]. Available:
http://ceur-ws.org/Vol-1252/cla2014 submission 13.pdf

[36] R. A. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, and
S. Vauttier, “Mining features from the object-oriented source code
of software variants by combining lexical and structural similarity,”
in IEEE 14th International Conference on Information Reuse &
Integration, IRI 2013, San Francisco, CA, USA, August 14-16,
2013. IEEE Computer Society, 2013, pp. 586–593. [Online].
Available: https://doi.org/10.1109/IRI.2013.6642522

[37] R. Al-Msie’deen, “Reverse engineering feature models from
software variants to build software product lines: REVPLINE ap-
proach,” Ph.D. dissertation, Montpellier 2 University, France, 2014.
[Online]. Available: https://tel.archives-ouvertes.fr/tel-01015102

[38] R. A. Al-Msie’deen, “Mining feature models from the object-
oriented source code of a collection of software product variants,” in
Doctoral Symposium of European Conference on Object-Oriented
Programming (ECOOP 2013),, Montpellier, France, July 2013, pp.
1–10.

[39] R. Al-Msie’deen, Feature Location in a Collection of Software
Product Variants. Lap Lambert Academic Publishing, 2014.

[40] C. Sun, D. Lo, X. Wang, J. Jiang, and S. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 2010, Cape Town, South
Africa, 1-8 May 2010, J. Kramer, J. Bishop, P. T. Devanbu, and
S. Uchitel, Eds. ACM, 2010, pp. 45–54. [Online]. Available:
https://doi.org/10.1145/1806799.1806811

[41] C. Sun, D. Lo, S. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011),
Lawrence, KS, USA, November 6-10, 2011, P. Alexander, C. S.
Pasareanu, and J. G. Hosking, Eds. IEEE Computer Society,
2011, pp. 253–262. [Online]. Available: https://doi.org/10.1109/
ASE.2011.6100061

[42] F. Thung, P. S. Kochhar, and D. Lo, “Dupfinder: integrated
tool support for duplicate bug report detection,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE
’14, Vasteras, Sweden - September 15 - 19, 2014, I. Crnkovic,
M. Chechik, and P. Grünbacher, Eds. ACM, 2014, pp. 871–874.
[Online]. Available: https://doi.org/10.1145/2642937.2648627

[43] J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, “Duplicate
bug report detection using dual-channel convolutional neural
networks,” in ICPC ’20: 28th International Conference on
Program Comprehension, Seoul, Republic of Korea, July 13-
15, 2020. ACM, 2020, pp. 117–127. [Online]. Available:
https://doi.org/10.1145/3387904.3389263

[44] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” in
29th International Conference on Software Engineering (ICSE
2007), Minneapolis, MN, USA, May 20-26, 2007. IEEE
Computer Society, 2007, pp. 499–510. [Online]. Available:
https://doi.org/10.1109/ICSE.2007.32

[45] C. D. Manning and H. Schütze, Foundations of statistical natural
language processing. MIT Press, 2001.

[46] R. A. A. Al-Msie’deen, “Automatic labeling of the object-oriented

source code: The lotus approach,” Science International-Lahore,
vol. 30, no. 1, pp. 45–48, 2018.

[47] R. A. Al-Msie’deen, “Tag clouds for software documents visual-
ization,” International Journal on Informatics Visualization, vol. 3,
no. 4, pp. 361–364, 2019.

[48] M. S. Rakha, C. Bezemer, and A. E. Hassan, “Revisiting
the performance evaluation of automated approaches for the
retrieval of duplicate issue reports,” IEEE Trans. Software Eng.,
vol. 44, no. 12, pp. 1245–1268, 2018. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2755005

[49] M. Rakha, C. Bezemer, and A. Hassan, “Revisiting the performance
of automated approaches for the retrieval of duplicate reports in
issue tracking systems that perform just-in-time duplicate retrieval,”
Empir. Softw. Eng., vol. 23, no. 5, pp. 2597–2621, 2018. [Online].
Available: https://doi.org/10.1007/s10664-017-9590-5

[50] Bugzilla-4.0. (2023) Release notes for bugzilla 4.0. [Online].
Available: https://www.bugzilla.org/releases/4.0/

[51] B. S. Neysiani and S. Morteza Babamir, “Automatic duplicate bug
report detection using information retrieval-based versus machine
learning-based approaches,” in 2020 6th International Conference
on Web Research (ICWR), April 2020, pp. 288–293.

[52] Z. Li, G. Yin, Y. Yu, T. Wang, and H. Wang, “Detecting
duplicate pull-requests in github,” in Proceedings of the 9th Asia-
Pacific Symposium on Internetware, Internetware 2017, Shanghai,
China, September 23 - 23, 2017, H. Mei, J. Lyu, Z. Jin, and
W. Zhao, Eds. ACM, 2017, pp. 20:1–20:6. [Online]. Available:
https://doi.org/10.1145/3131704.3131725

[53] Z. Li, Y. Yu, T. Wang, G. Yin, X. Mao, and H. Wang,
“Detecting duplicate contributions in pull-based model combining
textual and change similarities,” J. Comput. Sci. Technol.,
vol. 36, no. 1, pp. 191–206, 2021. [Online]. Available: https:
//doi.org/10.1007/s11390-020-9935-1

[54] A. Sureka and P. Jalote, “Detecting duplicate bug report using
character n-gram-based features,” in 2010 Asia Pacific Software
Engineering Conference, 2010, pp. 366–374.

[55] S. Banerjee, B. Cukic, and D. A. Adjeroh, “Automated
duplicate bug report classification using subsequence matching,” in
14th International IEEE Symposium on High-Assurance Systems
Engineering, HASE 2012, Omaha, NE, USA, October 25-27, 2012.
IEEE Computer Society, 2012, pp. 74–81. [Online]. Available:
https://doi.org/10.1109/HASE.2012.38

[56] S. Banerjee, Z. A. Syed, J. Helmick, M. V. Culp, K. J. Ryan,
and B. Cukic, “Automated triaging of very large bug repositories,”
Inf. Softw. Technol., vol. 89, pp. 1–13, 2017. [Online]. Available:
https://doi.org/10.1016/j.infsof.2016.09.006

[57] J. Deshmukh, K. M. Annervaz, S. Podder, S. Sengupta, and
N. Dubash, “Towards accurate duplicate bug retrieval using deep
learning techniques,” in 2017 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2017, Shanghai,
China, September 17-22, 2017. IEEE Computer Society, 2017,
pp. 115–124. [Online]. Available: https://doi.org/10.1109/ICSME.
2017.69

[58] K. Aggarwal, F. Timbers, T. Rutgers, A. Hindle, E. Stroulia,
and R. Greiner, “Detecting duplicate bug reports with software

https:// journal.uob.edu.bh/

http://ceur-ws.org/Vol-1252/cla2014_submission_13.pdf
https://doi.org/10.1109/IRI.2013.6642522
https://tel.archives-ouvertes.fr/tel-01015102
https://doi.org/10.1145/1806799.1806811
https://doi.org/10.1109/ASE.2011.6100061
https://doi.org/10.1109/ASE.2011.6100061
https://doi.org/10.1145/2642937.2648627
https://doi.org/10.1145/3387904.3389263
https://doi.org/10.1109/ICSE.2007.32
https://doi.org/10.1109/TSE.2017.2755005
https://doi.org/10.1007/s10664-017-9590-5
https://www.bugzilla.org/releases/4.0/
https://doi.org/10.1145/3131704.3131725
https://doi.org/10.1007/s11390-020-9935-1
https://doi.org/10.1007/s11390-020-9935-1
https://doi.org/10.1109/HASE.2012.38
https://doi.org/10.1016/j.infsof.2016.09.006
https://doi.org/10.1109/ICSME.2017.69
https://doi.org/10.1109/ICSME.2017.69
https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 15, No.1, 221-238 (Jan-24) 237

engineering domain knowledge,” J. Softw. Evol. Process., vol. 29,
no. 3, 2017. [Online]. Available: https://doi.org/10.1002/smr.1821

[59] A. Budhiraja, K. Dutta, R. Reddy, and M. Shrivastava, “DWEN:
deep word embedding network for duplicate bug report detection
in software repositories,” in Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman,
Eds. ACM, 2018, pp. 193–194. [Online]. Available: https:
//doi.org/10.1145/3183440.3195092

[60] A. Budhiraja, K. Dutta, M. Shrivastava, and R. Reddy, “Towards
word embeddings for improved duplicate bug report retrieval in
software repositories,” in Proceedings of the 2018 ACM SIGIR
International Conference on Theory of Information Retrieval,
ICTIR 2018, Tianjin, China, September 14-17, 2018, D. Song,
T. Liu, L. Sun, P. Bruza, M. Melucci, F. Sebastiani, and G. H.
Yang, Eds. ACM, 2018, pp. 167–170. [Online]. Available:
https://doi.org/10.1145/3234944.3234949

[61] M. B. Messaoud, A. Miladi, I. Jenhani, M. W. Mkaouer,
and L. Ghadhab, “Duplicate bug report detection using an
attention-based neural language model,” IEEE Trans. Reliab.,
vol. 72, no. 2, pp. 846–858, 2023. [Online]. Available: https:
//doi.org/10.1109/TR.2022.3193645

[62] X. Wu, W. Shan, W. Zheng, Z. Chen, T. Ren, and X. Sun,
“An intelligent duplicate bug report detection method based on
technical term extraction,” in IEEE/ACM International Conference
on Automation of Software Test, AST 2023, Melbourne, Australia,
May 15-16, 2023. IEEE, 2023, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/AST58925.2023.00005

[63] A. Panichella, “A systematic comparison of search algorithms for
topic modelling - A study on duplicate bug report identification,”
in Search-Based Software Engineering - 11th International
Symposium, SSBSE 2019, Tallinn, Estonia, August 31 - September
1, 2019, Proceedings, ser. Lecture Notes in Computer Science,
S. Nejati and G. Gay, Eds., vol. 11664. Springer, 2019, pp. 11–26.
[Online]. Available: https://doi.org/10.1007/978-3-030-27455-9 2

[64] H. Isotani, H. Washizaki, Y. Fukazawa, T. Nomoto, S. Ouji, and
S. Saito, “Sentence embedding and fine-tuning to automatically
identify duplicate bugs,” Frontiers Comput. Sci., vol. 4, 2022.
[Online]. Available: https://doi.org/10.3389/fcomp.2022.1032452

[65] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach
towards more accurate duplicate bug report detection,” in
Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, San Francisco, CA, USA, May 18-
19, 2013, T. Zimmermann, M. D. Penta, and S. Kim, Eds.
IEEE Computer Society, 2013, pp. 183–192. [Online]. Available:
https://doi.org/10.1109/MSR.2013.6624026

[66] P. V. Bagal, S. A. JOSHI, H. D. Chien, R. R. Diez, D. C. Woo, E. R.
Su, and S. Chang, “Duplicate bug report detection using machine
learning algorithms and automated feedback incorporation,” Patent
Application Publication - United States US20 170 199 803A1, Jul.
13, 2017.

[67] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug
report identification,” in 16th European Conference on Software
Maintenance and Reengineering, CSMR 2012, Szeged, Hungary,
March 27-30, 2012, T. Mens, A. Cleve, and R. Ferenc, Eds.
IEEE Computer Society, 2012, pp. 385–390. [Online]. Available:
https://doi.org/10.1109/CSMR.2012.48

[68] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and
C. Sun, “Duplicate bug report detection with a combination
of information retrieval and topic modeling,” in IEEE/ACM
International Conference on Automated Software Engineering,
ASE’12, Essen, Germany, September 3-7, 2012, M. Goedicke,
T. Menzies, and M. Saeki, Eds. ACM, 2012, pp. 70–79. [Online].
Available: https://doi.org/10.1145/2351676.2351687

[69] Y. Jiang, X. Su, C. Treude, C. Shang, and T. Wang, “Does
deep learning improve the performance of duplicate bug report
detection? an empirical study,” J. Syst. Softw., vol. 198, p. 111607,
2023. [Online]. Available: https://doi.org/10.1016/j.jss.2023.111607

[70] A. Pasala, S. Guha, G. Agnihotram, S. Prateek B, and
S. Padmanabhuni, An Analytics-Driven Approach to Identify
Duplicate Bug Records in Large Data Repositories. Cham:
Springer International Publishing, 2016, pp. 161–187. [Online].
Available: https://doi.org/10.1007/978-3-319-31861-5 8

[71] L. Feng, L. Song, C. Sha, and X. Gong, “Practical duplicate bug
reports detection in a large web-based development community,”
in Web Technologies and Applications - 15th Asia-Pacific
Web Conference, APWeb 2013, Sydney, Australia, April 4-6,
2013. Proceedings, ser. Lecture Notes in Computer Science,
Y. Ishikawa, J. Li, W. Wang, R. Zhang, and W. Zhang, Eds.,
vol. 7808. Springer, 2013, pp. 709–720. [Online]. Available:
https://doi.org/10.1007/978-3-642-37401-2 69

[72] R. A. A. Al-Msie’deen. (2023) BushraDBR ap-
proach. [Online]. Available: https://drive.google.com/drive/folders/
1ygkB2HavOEEpLzwJUA2CE8axyLuiLfD8

[73] R. A. Al-Msie’deen and A. Blasi, “Supporting software documen-
tation with source code summarization,” International Journal of
Advanced and Applied Sciences, vol. 6, no. 1, pp. 59–67, 2019.

[74] G. A. Miller, “WordNet: A lexical database for english,” Commun.
ACM, vol. 38, no. 11, pp. 39–41, 1995. [Online]. Available:
http://doi.acm.org/10.1145/219717.219748

[75] R. A. Al-Msie’deen, “Softcloud: A tool for visualizing software
artifacts as tag clouds,” Mutah Lil-Buhuth wad-Dirasat - Natural
and Applied Sciences Series, vol. 37, no. 2, pp. 93–116, 2022.

[76] R. Al-Msie’deen, “Tag clouds for object-oriented source code
visualization,” Engineering, Technology & Applied Science
Research, vol. 9, no. 3, pp. 4243–4248, 2019. [Online].
Available: https://doi.org/10.48084/etasr.2706

[77] M. W. Berry and M. Browne, Understanding search engines - math-
ematical modeling and text retrieval, ser. Software, environments,
tools. SIAM, 1999.

[78] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and
H. E. Salman, “Mining features from the object-oriented source code
of a collection of software variants using formal concept analysis
and latent semantic indexing,” in The 25th International Conference
on Software Engineering and Knowledge Engineering. Knowledge
Systems Institute Graduate School, 2013, pp. 244–249.

[79] R. Al-Msie’deen, “Visualizing object-oriented software for under-
standing and documentation,” International Journal of Computer
Science and Information Security (IJCSIS), vol. 13, no. 5, pp. 18–
27, 2015.

[80] R. Al-Msie’deen, A. H. Blasi, H. E. Salman, S. S. Alja’afreh,
A. Abadleh, M. A. Alsuwaiket, A. Hammouri, A. J. Al Nawaiseh,

https:// journal.uob.edu.bh/

https://doi.org/10.1002/smr.1821
https://doi.org/10.1145/3183440.3195092
https://doi.org/10.1145/3183440.3195092
https://doi.org/10.1145/3234944.3234949
https://doi.org/10.1109/TR.2022.3193645
https://doi.org/10.1109/TR.2022.3193645
https://doi.org/10.1109/AST58925.2023.00005
https://doi.org/10.1007/978-3-030-27455-9_2
https://doi.org/10.3389/fcomp.2022.1032452
https://doi.org/10.1109/MSR.2013.6624026
https://doi.org/10.1109/CSMR.2012.48
https://doi.org/10.1145/2351676.2351687
https://doi.org/10.1016/j.jss.2023.111607
https://doi.org/10.1007/978-3-319-31861-5_8
https://doi.org/10.1007/978-3-642-37401-2_69
https://drive.google.com/drive/folders/1ygkB2HavOEEpLzwJUA2CE8axyLuiLfD8
https://drive.google.com/drive/folders/1ygkB2HavOEEpLzwJUA2CE8axyLuiLfD8
http://doi.acm.org/10.1145/219717.219748
https://doi.org/10.48084/etasr.2706
https://journal.uob.edu.bh/

238 Ra’Fat Al-Msie’deen: BushraDBR — An Automatic Approach to Retrieving Duplicate Bug Reports.

W. Tarawneh, and S. A. Al-Showarah, “Detecting commonality and
variability in use-case diagram variants,” Journal of Theoretical and
Applied Information Technology, vol. 100, no. 4, pp. 1113–1126,
2022.

[81] J.-R. Falleri and X. Dolques. (2010) Erca tool. [Online]. Available:
http://code.google.com/p/erca/

[82] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, and S. Vauttier,
“Documenting the mined feature implementations from the object-
oriented source code of a collection of software product variants,”
in The 26th International Conference on Software Engineering and
Knowledge Engineering, Hyatt Regency, Vancouver, BC, Canada,
July 1-3, 2013, M. Reformat, Ed. Knowledge Systems Institute
Graduate School, 2014, pp. 138–143.

[83] Mozilla. (2022) Eliot: Mozilla symbolication server. [Online].
Available: https://symbolication.services.mozilla.com/

[84] Bugzilla. (2023) Eliot dataset. [Online]. Available: https://bugzilla.
mozilla.org/buglist.cgi?quicksearch=Eliot%20&list id=16400624

[85] M. Foundation. (2022) Tecken: Symbols at mozilla. [Online].
Available: https://tecken.readthedocs.io/en/latest/

[86] Bugzilla.Mozilla.Org. (2023) Firefox. [Online]. Available: https:
//bugzilla.mozilla.org/describecomponents.cgi?product=Firefox

[87] Bugzilla. (2023) WebPayments UI. [Online]. Avail-
able: https://bugzilla.mozilla.org/buglist.cgi?product=Firefox&
component=WebPayments%20UI&resolution=---

[88] Bugzilla.Mozilla-Core. (2023) Audio/video component. [Online].
Available: https://bugzilla.mozilla.org/buglist.cgi?product=Core&
component=Audio%2FVideo&resolution=---&list id=16625322

[89] Bugzilla-Core.DOM-Editor. (2023) DOM: Editor component. [On-
line]. Available: https://bugzilla.mozilla.org/buglist.cgi?component=
DOM%3A%20Editor&list id=16625494&product=Core&query

format=advanced&resolution=---&order=bug id&limit=0

[90] A. A. Shamailh, R. Al-Msie’deen, and A. Alsarhan, “Comparison
between the rules of data storage tools,” International Journal of
Database Theory and Application, vol. 8, no. 1, pp. 129–136, 2015.
[Online]. Available: https://article.nadiapub.com/IJDTA/vol8 no1/
14.pdf

[91] Jdom. (2023) The JDOMTM project. [Online]. Available: http:
//www.jdom.org/

[92] JAMA. (2023) JAMA: A Java matrix package. [Online]. Available:
https://math.nist.gov/javanumerics/jama/

Ra’Fat Al-Msie’Deen is an Associate Pro-
fessor in the Software Engineering depart-
ment at Mutah University since 2014. He
received his PhD in Software Engineer-
ing from the Université de Montpellier,
Montpellier - France, in 2014. He received
his MSc in Information Technology from
the University Utara Malaysia, Kedah -
Malaysia, in 2009. He got his BSc in Com-
puter Science from Al-Hussein Bin Talal

University, Ma’an - Jordan, in 2007. His research interests in-
clude software engineering, requirements engineering, software
product line engineering, feature identification, word clouds, and
formal concept analysis. Dr. Al-Msie’Deen aimed to utilize his
background and skills in the academic and professional fields to
enhance students expertise in developing software systems. Con-
tact him at rafatalmsiedeen@mutah.edu.jo. Also, you can reach
him using different alternatives: � author’s page @ github.io, ¯
LinkedIn, ResearchGate, or Orcid.

https:// journal.uob.edu.bh/

http://code.google.com/p/erca/
https://symbolication.services.mozilla.com/
https://bugzilla.mozilla.org/buglist.cgi?quicksearch=Eliot%20&list_id=16400624
https://bugzilla.mozilla.org/buglist.cgi?quicksearch=Eliot%20&list_id=16400624
https://tecken.readthedocs.io/en/latest/
https://bugzilla.mozilla.org/describecomponents.cgi?product=Firefox
https://bugzilla.mozilla.org/describecomponents.cgi?product=Firefox
https://bugzilla.mozilla.org/buglist.cgi?product=Firefox&component=WebPayments%20UI&resolution=---
https://bugzilla.mozilla.org/buglist.cgi?product=Firefox&component=WebPayments%20UI&resolution=---
https://bugzilla.mozilla.org/buglist.cgi?product=Core&component=Audio%2FVideo&resolution=---&list_id=16625322
https://bugzilla.mozilla.org/buglist.cgi?product=Core&component=Audio%2FVideo&resolution=---&list_id=16625322
https://bugzilla.mozilla.org/buglist.cgi?component=DOM%3A%20Editor&list_id=16625494&product=Core&query_format=advanced&resolution=---&order=bug_id&limit=0
https://bugzilla.mozilla.org/buglist.cgi?component=DOM%3A%20Editor&list_id=16625494&product=Core&query_format=advanced&resolution=---&order=bug_id&limit=0
https://bugzilla.mozilla.org/buglist.cgi?component=DOM%3A%20Editor&list_id=16625494&product=Core&query_format=advanced&resolution=---&order=bug_id&limit=0
https://article.nadiapub.com/IJDTA/vol8_no1/14.pdf
https://article.nadiapub.com/IJDTA/vol8_no1/14.pdf
http://www.jdom.org/
http://www.jdom.org/
https://math.nist.gov/javanumerics/jama/
mailto:rafatalmsiedeen@mutah.edu.jo
mailto:rafatalmsiedeen@mutah.edu.jo
https://rafat66.github.io/Al-Msie-Deen/
https://rafat66.github.io/Al-Msie-Deen/
https://www.linkedin.com/in/ra-fat-al-msie-deen-08895062/
https://www.linkedin.com/in/ra-fat-al-msie-deen-08895062/
https://www.linkedin.com/in/ra-fat-al-msie-deen-08895062/
https://www.researchgate.net/profile/Rafat-Al-Msiedeen
https://www.researchgate.net/profile/Rafat-Al-Msiedeen
https://orcid.org/0000-0002-9559-2293
https://orcid.org/0000-0002-9559-2293
https://journal.uob.edu.bh/

	Introduction
	A mini-systematic survey about DBR detection and retrieval
	The DBR retrieval process: BushraDBR approach
	Preprocessing of BRs
	Measuring textual similarity between BRs using LSI
	Retrieving DBRs using FCA

	Experimentation
	Conclusion and future work
	References
	Biographies
	Ra'Fat Al-Msie'Deen

